

www.prolightopto.com

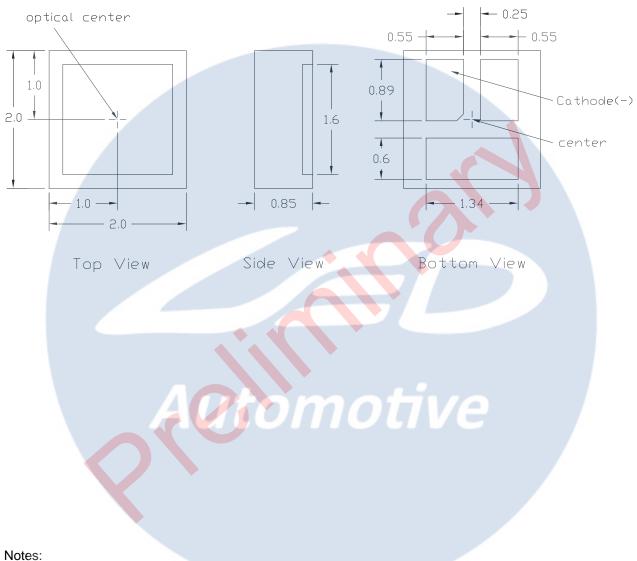
ProLight PBVQ-8FWE-F1GS 8W Power LED Technical Datasheet Version: P1.2

ProLight Opto ProEngine Series

Features

- Ceramic Substrate package , High brightness, High reliability, It is mainly used in automobile applications
- Good color uniformity
- More energy efficient than incandescent and most halogen lamps
- Size : 2.0mm*2.0mm*0.85mm
- According to standard white color gamut
- Compatible with SMT
- Viewing Angle : 120°
- Package : Max: 2000pcs /reel
- Recommended current 1000mA
- · RoHS compliant
- · AEC-Q102 qualified
- · SAE/ECE Compliant

Main Applications


- · Bicycle Lamps
- Exterior Automotive Lighting

otive

- · Floodlight
- Bending Light
- Daytime Running Light

Emitter Mechanical Dimensions

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are \pm 0.1mm.
- 4. Please do not solder the emitter by manual hand soldering, otherwise it will damage the emitter.
- 5. Please do not use a force of over 0.3kgf impact or pressure on the lens of the LED, otherwise it will cause a catastrophic failure.

*The appearance and specifications of the product may be modified for improvement without notice.

Flux Characteristics, $T_J = 25^{\circ}C$

Radiation Color Pattern		Dort Number	Luminous Flux Φ _v (Im)			
		Part Number Emitter	@1000mA		Refer @1200mA	
Fallen		Emitter	Min.	Тур.	Min.	Тур.
Flat	White	PBVQ-8FWE-F1GS	435	500	520	580

• ProLight maintains a tolerance of ± 7% on flux and power measurements.

• Please do not drive at rated current more than 1 second without proper heat sink.

Electrical Characteristics, T_J = 25°C

		@1000mA	N	Refer @1200mA	Thermal Resistance
Color	Min.	Тур.	Max.	Тур.	Junction to Slug (°C/W)
White	2.8	3.2	3.6	3.3	4.7

ProLight maintains a tolerance of ± 0.1V for Voltage measurements.

Optical Characteristics at 1000mA, T_j = 25°C

Radiation	Color	Color	r Temperature		Total included Angle (degrees)	Viewing Angle (degrees)
Pattern	COIDI	Min.	Тур.	Max.	θ _{0.90V}	2 θ _{1/2}
		5380 K	5620 K	5860 K	160	120
Flat	White	5620 K	5880 K	6140 K	160	120
Flat	vvince	5870 K	6150 K	6430 K	160	120
		6140 K	6450 K	6760 K	160	120

• ProLight maintains a tolerance of ± 5% for CCT measurements.

Absolute Maximum Ratings

Parameter	White
Max DC Forward Current (mA)	1800
Peak Pulsed Forward Current (mA)	2000 (less than 1/10 duty cycle@1KHz)
LED Junction Temperature	150°C
Junction Temperature for short time applications*	175°C
Operating Board Temperature at Maximum DC Forward Current	-40°C - 125°C
Storage Temperature	-40°C - 125°C
Soldering Temperature	JEDEC 020c 260°C
Allowable Reflow Cycles	3
Reverse Voltage	Not designed to be driven in reverse bias
ESD withstand voltage(kV)	up to 8
(acc. to IEC 61000-4-2-air discharge)	up to 8

Note: * The LED chip exhibits excellent performance but slight package discoloration occurs at highest temperatures. Exemplary median lifetime for T_J = 175°C is 100h.

notive

Photometric Luminous Flux Bin Structure

Color	Bin Code	Minimum Photometric Flux (Im)	Maximum Photometric Flux (Im)	Available Color Bins
	S6	435	460	All
	S7	460	485	【1】
	S8	485	510	【1】
White	S9	510	530	【1】
	SA	530	560	【1】
	SB	560	585	【1】

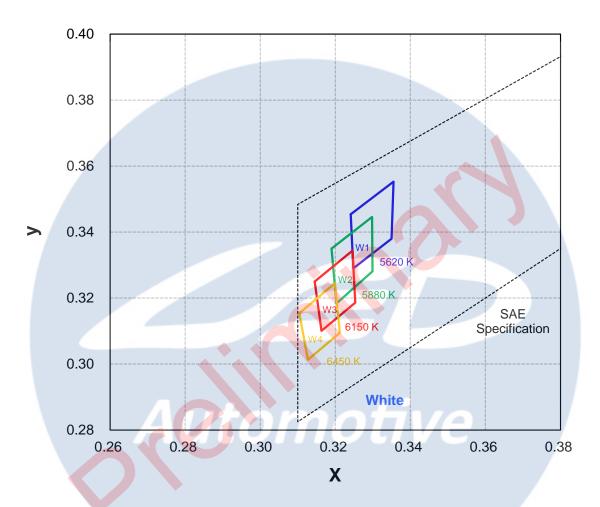
• ProLight maintains a tolerance of \pm 7% on flux and power measurements.

• The flux bin of the product may be modified for improvement without notice.

• ^[1] The rest of color bins are not 100% ready for order currently. Please ask for quote and order possibility.

Forward Voltage Bin Structure

Color	Bin Code	Minimum Voltage (V)	Maximum Voltage (V)
	A	2.8	3.0
\//bito	В	3.0	3.2
White	С	3.2	3.4
	D	3.4	3.6


• ProLight maintains a tolerance of $\pm 0.1V$ for Voltage measurements.

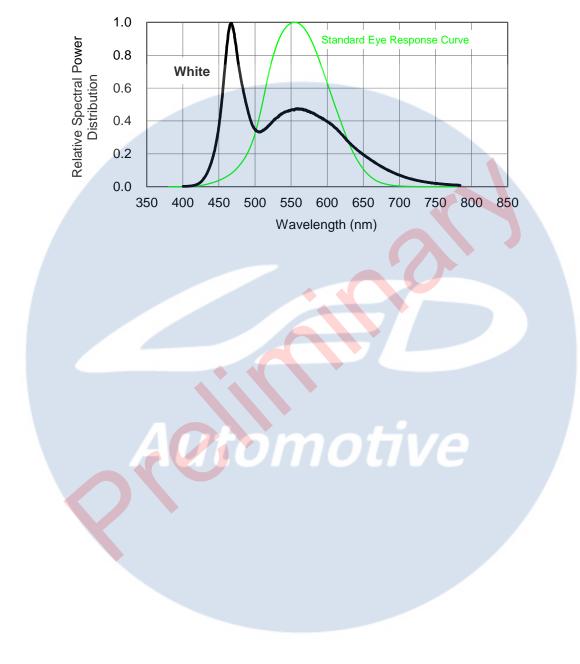
Note: Although several bins are outlined, product availability in a particular bin varies by production run and by product performance. Not all bins are available in all colors.

Color Bin

White Binning Structure Graphical Representation

White Bin Structure

Bin Code	х	У	Typ. CCT (K)	Bin Code	х	у	Typ. CCT (K)
	0.3241	0.3454			0.3145	0.3250	
W1	0.3248	0.3290	5620	W3	0.3163	0.3101	6150
VVI	0.3350	0.3380	5020	003	0.3253	0.3186	0150
	0.3355	0.3553			0.3246	0.3344	
	0.3190	0.3350			0.3104	0.3154	
W2	0.3203	0.3184	5880	W4	0.3127	0.3013	6450
VVZ	0.3299	0.3281	0000	VV4	0.3212	0.3095	0450
	0.3298	0.3446			0.3199	0.3245	


• Tolerance on each color bin (x , y) is ± 0.005

DRAFT - For reference only. Subject to change without notice.

Color Spectrum, T_J = 25°C

1. White

Junction Temperature Relative Characteristics

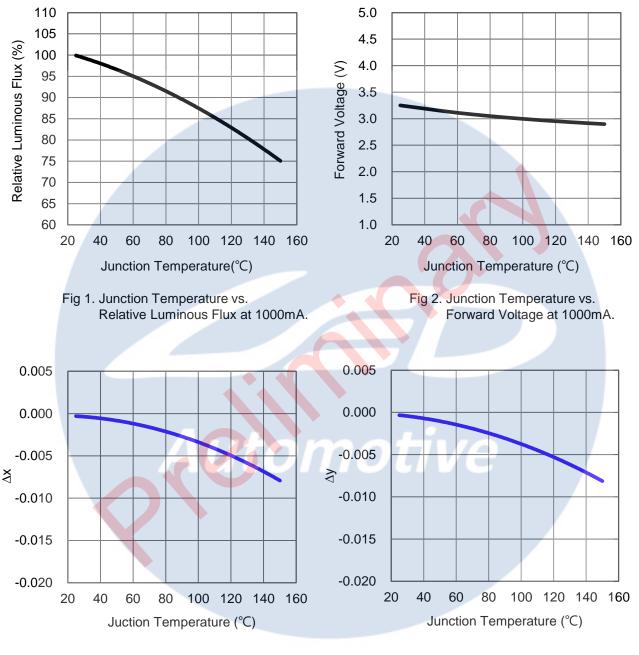
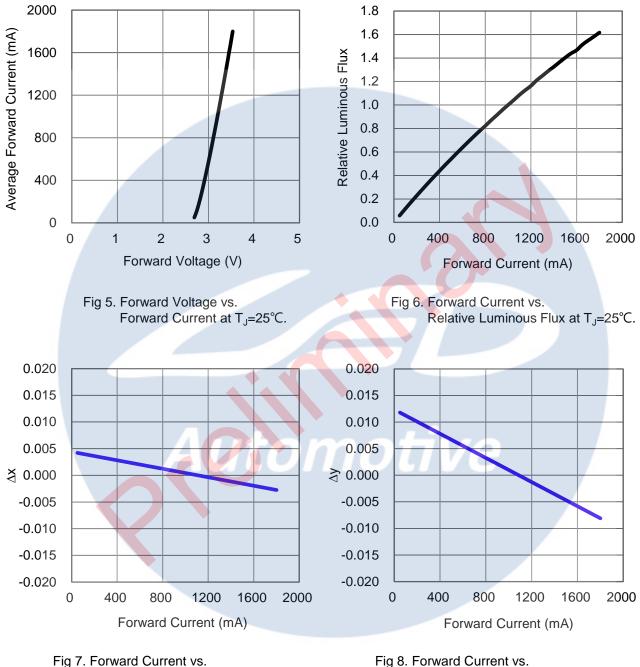



Fig 3. Junction Temperature vs. Chromaticity Coordinate Δx at 1000mA.

Fig 4. Junction Temperature vs. Chromaticity Coordinate Δy at 1000mA.

Forward Current Relative Characteristics

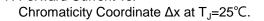
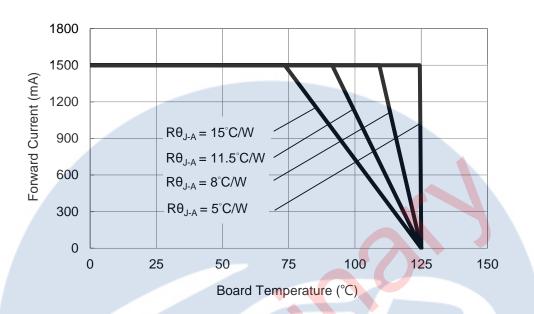
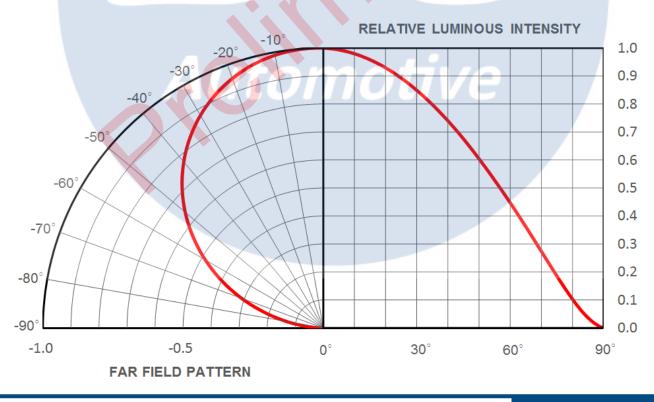



Fig 8. Forward Current vs. Chromaticity Coordinate Δy at T_J=25°C.



Board Temperature vs. Maximum Forward Current

Maximum Forward Current

Typical Representative Spatial Radiation Pattern

DRAFT - For reference only. Subject to change without notice.

Moisture Sensitivity Level – JEDEC Level 1

			Soak Requirements			
Level	Floor Life		Standard		Accelerated Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA

- The standard soak time includes a default value of 24 hours for semiconductor manufature's exposure time (MET) between bake and bag and includes the maximum time allowed out of the bag at the distributor's facility.
- Table below presents the moisture sensitivity level definitions per IPC/JEDEC's J-STD-020C.

				Soak Requirements			
Level	Floor	r Life	Stan	dard	Accelerated	Environment	
	Time	Conditions	Time (hours)	Conditions	Time (hours)	Conditions	
1	Unlimited	≤30°C / 85% RH	168 +5/-0	85°C / 85% RH	NA	NA	
2	1 year	≤30°C / 60% RH	168 +5/-0	85°C / 60% RH	NA	NA	
2a	4 weeks	≤30°C / 60% RH	696 +5/-0	30°C / 60% RH	120 +1/-0	60°C / 60% RH	
3	168 hours	≤30°C / 60% RH	192 +5/-0	30°C / 60% RH	40 +1/-0	60°C / 60% RH	
4	72 hours	≤30°C / 60% RH ◆	96 +2/-0	30°C / 60% RH	20 +0.5/-0	60°C / 60% RH	
5	48 hours	≤30°C / 60% RH	72 +2/-0	30°C / 60% RH	15 +0.5/-0	60°C / 60% RH	
5 a	24 hours	≤30°C / 60% RH	48 +2/-0	30°C / 60% RH	10 +0.5/-0	60°C / 60% RH	
6	Time on Label (TOL)	≤30°C / 60% RH	Time on Label (TOL)	30°C / 60% RH	NA	NA	

Reliability testing in accordance with AEC-Q102

The development of this product included extensive operational life-time testing and

environmental testing. Table 1 summarizes the tests applied and cumulative test results

obtained from testing performed in accordance with AEC-Q102.

 Table 1. Operating life, mechanical and environmental tests performed on it's package in accordance with AEC-Q102.

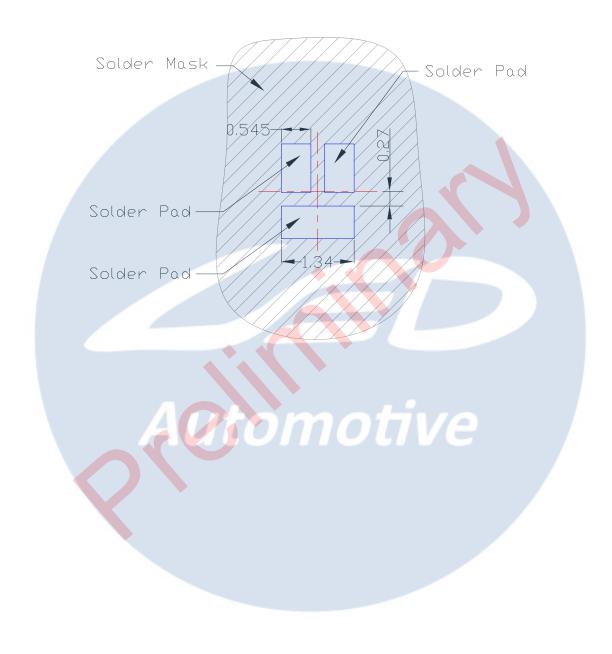
Abrb Stress	Conditions	Duration	Failure Criteria	Rejects
TEST Pre- and Post-Stress Electrical Test	$T_J = 25^{\circ}C$	N/A	See notes [2]	0
PC Pre-conditioning	JESD22-A113 Soak Tamb = 85°C, RH = 85% Reflow soldering	168 hours 3 cycles	See notes [2]	0
EV External Visual	JESD22 B-101	N/A	See notes [2]	0
HTFB High Temperature Forward Bias	JESD22-A108 Tamb =85°C, IF = max. DC [1]	1000 hours	See notes [2]	0
TC Temperature Cycling	JESD22-A104 -30°C to 80°C	1000 cycles	See notes [2]	0
HTHHB High temp. & High Humidity Bias	JESD22-A101 Tamb = 85°C, RH = 85%, IF = max. DC [1]	1000 hours	See notes [2]	0
PTC Power and Temperature cycle	-30°C to 85°C, 10 minutes dwell, 20 minutes transfer (1 hour cycle), 2 minutes ON/2 minutes OFF, IF = max. DC [1]	1000 hours	See notes [2]	0
ESD	AEC Q101-001	8000V	See notes [2]	0
VVF Vibration Variable Frequency	10-2000-10 Hz, log or linear sweep rate, 20 G about 1 min., 1.5 mm, 3X/axis	tive	See notes [3]	0
MS Mechanical Shock	1500 G, 0.5 msec. pulse, 5 shocks each 6 axis	67 <u>v</u> C	See notes [3]	0
RSH Resistance to Solder Heat	JESD22-A111 / JESD22-B106 260 °C ± 5 °C	10 s	See notes [3]	0
SD Solderability	J-STD-002 245 °C ± 5 °C	3 s	See notes [3]	0

Notes:

1. Depending on the maximum derating curve.

2. Criteria for judging failure

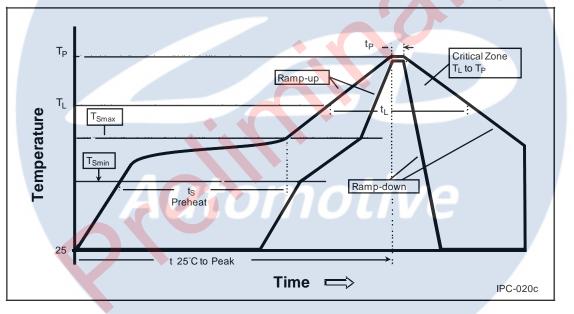
ltem	Test Condition	Criteria for Judgement		
liem	Test Condition	Min.	Max.	
Forward Voltage (V _F)	I _F = max DC		Initial Level x 1.1	
Luminous Flux or Radiometric Power (Φ _V)	I _F = max DC	Initial Level x 0.8		
Reverse Current (I_R)	V _R = 5V		50 µA	


* The test is performed after the LED is cooled down to the room temperature.

3. A failure is an LED that is open or shorted.

Recommended Solder Pad Design

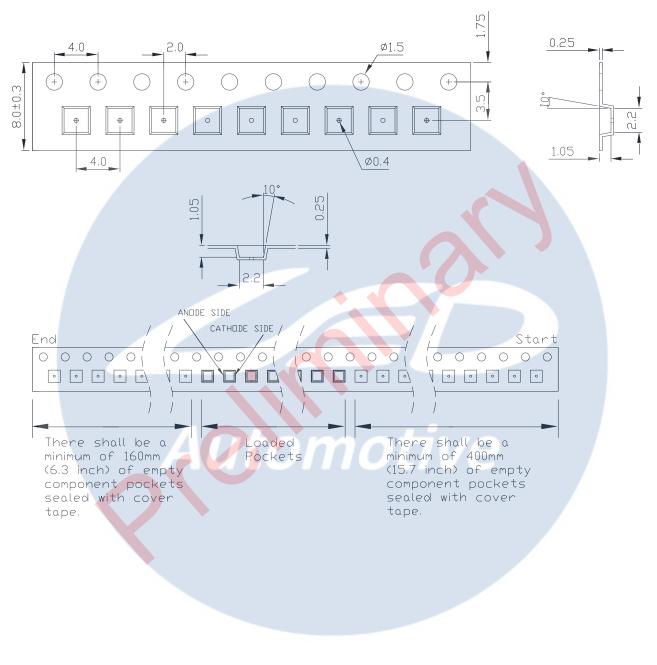
Standard Emitter


• All dimensions are in millimeters.

DRAFT - For reference only. Subject to change without notice.

Reflow Soldering Condition

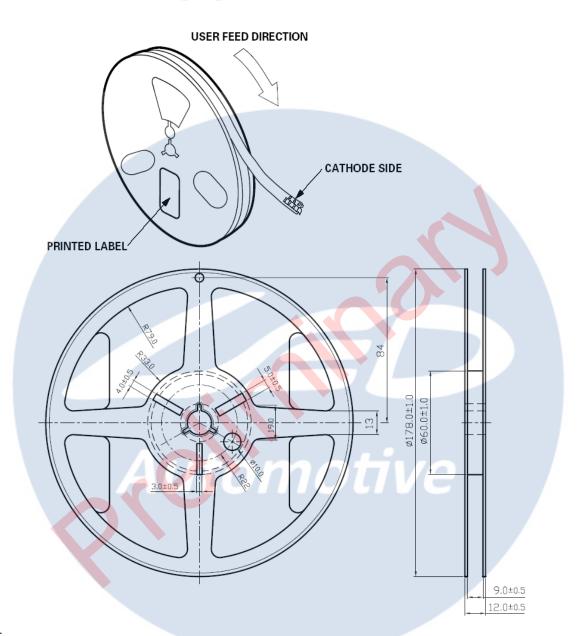
Profile Feature	Sn-Pb Eutectic Assembly	Pb-Free Assembly
Average Ramp-Up Rate	3°C / second max.	3°C / second max.
(T _{Smax} to T _P)		
Preheat		
– Temperature Min (T _{smin})	100°C	150°C
– Temperature Max (T _{Smax})	150°C	200°C
– Time (t _{smin} to t _{smax})	60-120 seconds	60-180 seconds
Time maintained above:		
– Temperature (T _L)	183°C	217°C
– Time (t _i)	60-150 seconds	60-150 seconds
Peak/Classification Temperature (T _P)	240°C	260°C
Time Within 5°C of Actual Peak	10-30 seconds	20-40 seconds
Temperature (t _P)	10-50 Seconds	20-40 Seconds
Ramp-Down Rate	6°C/second max.	6°C/second max.
Time 25°C to Peak Temperature	6 minutes max.	8 minutes max.



- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- All temperatures refer to topside of the package, measured on the package body surface.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a double-head soldering iron should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- Reflow soldering should not be done more than three times.
- When soldering, do not put stress on the LEDs during heating.
- After soldering, do not warp the circuit board.

DRAFT - For reference only. Subject to change without notice.

Emitter Reel Packaging


Notes:

- 1. Drawing not to scale.
- 2. All dimensions are in millimeters.
- 3. Unless otherwise indicated, tolerances are $\pm\,0.1\text{mm}.$

DRAFT - For reference only. Subject to change without notice.

Emitter Reel Packaging

Notes:

- 1. Empty component pockets sealed with top cover tape.
- 2. 1000 and 2000 pieces per reel.
- 3. Drawing not to scale.
- 4. All dimensions are in millimeters.

Precaution for Use

- We recommend using the M705-S101-S4 solder paste from SMIC (Senju Metal Industry Co., Ltd.) for lead-free soldering.
- Do not use solder pastes with post reflow flux residue>47%. (58Bi-42Sn eutectic alloy, etc) This kind of solder pastes may cause a reliability problem to LED.
- Any mechanical force or any excess vibration shall not be accepted to apply during cooling process to normal temperature after soldering.
- Please avoid rapid cooling after soldering.
- Components should not be mounted on warped direction of PCB.
- Repairing should not be done after the LEDs have been soldered. When repairing is unavoidable, a heat plate should be used. It should be confirmed beforehand whether the characteristics of the LEDs will or will not be damaged by repairing.
- This device should not be used in any type of fluid such as water, oil, organic solvent and etc. When cleaning is required, isopropyl alcohol should be used.
- When the LEDs are illuminating, operating current should be decide after considering the package maximum temperature.
- The appearance, specifications and flux bin of the product may be modified for improvement without notice. Please refer to the below website for the latest datasheets. http://www.prolightopto.com/

Handling of Lens LEDs

Notes for handling of lens LEDs

- Please do not use a force of over 0.3kgf impact or pressure on the lens, otherwise it will cause a catastrophic failure.
- The LEDs should only be picked up by making contact with the sides of the LED body.
- Avoid touching the lens especially by sharp tools such as Tweezers.
- Avoid leaving fingerprints on the lens.
- Please store the LEDs away from dusty areas or seal the product against dust.
- Please do not mold over the lens with another resin. (epoxy, urethane, etc)

